Thermodynamics vs Kinetics

Overview

A general Reaction Coordinate Diagram relating the energy of a system to its geometry along one possible reaction pathway is given in the figure below. In the figure below, the Activation Energy, E_a is that critical minimum energy in a chemical reaction required by reactants to be converted into products. The quantities, $E_{a,f}$ and $E_{a,r}$ are the activation energies for the forward and reverse reactions respectively. The Transition State is that point on the energy surface where the Activated Complex, an unstable species having the highest energy, crosses over from reactants to products.

The rate constant k in a chemical reaction is a kinetic quantity related to the activation energy through the Arrhenius Equation, $k = Ae^{-E_a/RT}$.

The energy difference, $\Delta E_{\text{Reaction}} = E_{a,f} - E_{a,r}$, is a thermodynamic quantity related to the Free Energy (ΔG), for a chemical reaction:

$$\Delta G = \Delta E_{\text{Reaction}} = E_{a,f} - E_{a,r}$$
Interpretation of Reaction Coordinate Diagram

The simple reaction coordinate diagram given on the previous page contains a great deal of useful information:

- It defines the geometries of reactants, transition state, and products along the reaction coordinate.

- It provides insight regarding the thermochemistry of the overall chemical reactions. For example, in the figure below on the left, the products are lower in energy than the reactants leading to an exothermic reaction (ΔH < 0). On the other hand, if the reaction were endothermic (ΔH > 0) as in the figure below on the right, the products would be higher in energy than the reactants.

- Finally, the diagram gives information about the rate of a reaction. The higher the energy of the transition state (corresponding to an increase in activation energy E_a) the slower the reaction is likely to proceed.
The Importance of Computational Chemistry

Calculation can provide a direct handle on all the important components of reaction surfaces including the geometries and energies of reactants and products as well as reactive intermediates and transition states which are difficult and even impossible to determine experimentally.

The idea in the following exercises is to compute a reaction coordinate for chemical reactions not only by determining the structures and energies of both reactants and products but also in obtaining information about the elusive transition state structures along the reaction pathway. This is one example of the power and usefulness of Computational Chemistry.
S_N2 Reactions

An S_N2 reaction involves the attack of a nucleophile X^- (e.g. F^-, Cl^-, OH^-) at a tetrahedral carbon site opposite a leaving group Y^ which leads to inversion at the carbon center, similar to an umbrella that flips inside out as a result of a strong wind. A nucleophile is any species with a large concentration of electron density (e.g. a negatively charged ion) which has a strong affinity for a positively charged center.

For example, the carbon-chlorine bond in H_3C-Cl is polarized (C^δ+ - Cl^δ-) which leads the nucleophile X^- to attack at the positively charged carbon atom: X^- ~ C^δ+ - Cl^δ-.

\[
\begin{align*}
\text{X}^- + \text{H}_3\text{C}-\text{Cl} & \rightarrow \text{X} - \text{C}^\delta + \text{H} + \text{Y}^-
\end{align*}
\]

The S_N2 reaction in which the attacking nucleophile and leaving group are both Cl^- can be written as:

\[
\text{Cl}^- + \text{CH}_3\text{Cl} \rightarrow \text{Cl}^- \cdots \text{CH}_3\text{Cl} \rightarrow [\text{Cl} - \cdots - \text{CH}_3 - \cdots - \text{Cl}]^{-\dagger} \rightarrow \text{ClCH}_3 \cdots \text{Cl}^- \rightarrow \text{CH}_3\text{Cl} + \text{Cl}^-
\]

This is known as a symmetrical or identity reaction since both the reactants (Cl^- + CH_3Cl) and products (CH_3Cl + Cl^-) are identical. However, more general reactions involving different attacking and leaving groups form the basis of this reaction. The restriction of having identical attacking and leaving groups was purposefully chosen for one component of the present exercise in order to allow an easier analysis without any loss of the concepts inherent in more general S_N2 reactions.

In this exercise we will examine both an identity S_N2 reaction as well as a more general S_N2 reaction.

In the reaction above the two species: Cl^- ... CH_3Cl, ClCH_3 ... Cl^- are called ion-molecule complexes. They are formed when the anion and the molecule approach each other at distances (≈ 2.5 – 3.5 Å) where they can interact to produce a stable, weakly-bound aggregate, ion-molecule complex. The forces holding this complex together are mostly coulombic and are very similar to the ionic forces you have discussed in lecture. The geometry of the methyl chloride group in these complexes is similar to that of isolated methyl chloride, and though too weakly interacting to persist in solution, they do exist in the gas phase.

The complex [Cl - ... CH_3 - ... Cl]^{-\dagger} is defined as the transition state structure, the highest energy structure on the reaction energy surface, and has a trigonal-bipyramidal geometry similar to Cl - PH_3 - Cl. Of course, the transition state structure, [Cl - ... CH_3 - ... Cl]^{-\dagger}, is much more unstable than Cl - PH_3 - Cl because the carbon atom has five bonds (two weak C-Cl bonds and three C-H bonds), but carbon likes to form four bonds. On the other hand, the phosphorus atom is capable of forming stable structures containing five bonds.
Reaction Profile for the Cl$^-$ + CH$_3$Cl S$_N$2 Reaction

Initially, we will focus our attention on the symmetric or identity reaction discussed previously:

\[\text{Cl}^- + \text{CH}_3\text{Cl} \rightarrow \text{Cl}^- \cdots \text{CH}_3\text{Cl} \rightarrow [\text{Cl}---\text{CH}_3\cdots\text{Cl}]^\ddagger \rightarrow \text{ClCH}_3\cdots\text{Cl}^- \rightarrow \text{ClCH}_3 + \text{Cl}^- \]

Construct the gas phase Reaction Coordinate Diagram for the Cl$^-$ + CH$_3$Cl S$_N$2 reaction by plotting the relative energy in kJ mol$^{-1}$ versus Cl$^-$ + CH$_3$ Cl. Place the Reaction Coordinate Diagram on the graph provided below and plot the energies on a relative energy scale. Label the various species along the reaction pathway.
Structure and Bonding in the Cl⁻ + CH₃Cl S₈2 Reaction

Examine the geometries of the reacting species for the symmetric Cl⁻ + CH₃Cl S₈2 reaction, and enter the observed geometries in the table below.

<table>
<thead>
<tr>
<th>Species</th>
<th>Distances</th>
<th>Angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r_C-H</td>
<td>r_C-Cl</td>
</tr>
<tr>
<td>Cl⁻ + CH₃Cl⁻</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl⁻ ·· CH₃⁻ Cl⁻</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Species</th>
<th>Distances</th>
<th>Angles</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Cl ·· CH₃ ·· Cl]⁻‡</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a) The entry \{Cl⁻ + CH₃Cl⁻\} is taken to mean an isolated Cl⁻ ion “plus” an isolated CH₃Cl molecule. Consequently, choose a point on the graph where the distance between the Cl⁻ ion and C atom is largest. The Cl⁻-C distance is not significant.

b) The entry \{Cl⁻ ·· CH₃⁻ Cl⁻\} corresponds the ion-molecule complex so the Cl⁻-C distance is significant in this case.

Sketches of Reacting Species

- Sketch structures of the reactants, ion-molecule complex, transition state species, and products. Indicate important structural parameters including bond distances and bond angles on each sketch.

\[
\text{Cl}⁻ + \text{CH₃Cl} \quad \text{Cl}⁻ ·· \text{CH₃Cl} \]

\[
[\text{Cl} -- \text{CH₃} -- \text{Cl}]⁻‡
\]
Structure and Bonding in the \(\text{Cl}^- + \text{CH}_3\text{Cl} \) \(\text{S}_\text{N}2 \) Reaction

Questions

- Obtain values of charges for all the atoms in the ion-molecule species \(\text{Cl}^- \cdots \text{CH}_3\text{Cl} \) and place them on the corresponding sketch given previously. Discuss the forces holding together this weak complex. Compare the \(\text{C} \cdots \text{Cl}^- \) bond distance with \(\text{C}-\text{Cl} \) bond distance in \(\text{CH}_3 - \text{Cl} \), and comment on the relative strength of these two bonds.

- Discuss the bonding around the central \(\text{C} \) atom in the \([\text{Cl} \cdots \text{CH}_3 \cdots \text{Cl}]^- \dagger \) transition state. Does the carbon atom prefer to have four or five bonds attached to it? Why doesn’t the carbon atom easily undergo valence-shell expansion similar to the \(\text{P} \) atom in \(\text{PCl}_5 \)? Predict the structure of the \([\text{Cl} \cdots \text{CH}_3 \cdots \text{Cl}]^- \dagger \) transition state from VSEPR theory and give the Structure Number (SN) about the \(\text{C} \) atom.
Reaction Profiles for the Br⁻ + CH₃Cl S_N2 Reaction

The following exercises now focus on a more general S_N2 reaction in which the attacking group (Br⁻) differs from the leaving group (Cl⁻):

\[
\text{Br}^- + \text{CH}_3\text{Cl} \rightarrow \text{Br}^- \cdots \text{CH}_3\text{Cl} \rightarrow [\text{Br}^- \cdots \text{CH}_3 \cdots \text{Cl}]^{-} \rightarrow \text{BrCH}_3 \cdots \text{Cl}^- \rightarrow \text{BrCH}_3 + \text{Cl}^-
\]

Construct both gas and solution phase Reaction Coordinate Diagrams for the Br⁻ + CH₃Cl S_N2 reaction by plotting the relative energy in kJ mol⁻¹ versus Br⁻ + CH₃ – Cl. Place both reaction profiles on the same graph provided below, and plot the energies on a relative energy scale. Please be sure to label the various species along the reaction pathway.
Structure and Energetics of the Br$^- + \text{CH}_3\text{Cl}$ S_N2 Reaction

Examine the geometries of the reacting species for the symmetric Br$^- + \text{CH}_3\text{Cl}$ S_N2 reaction, and enter the observed geometries in the table below.

<table>
<thead>
<tr>
<th>Species</th>
<th>Distances</th>
<th>Angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$r_{\text{C-H}}$</td>
<td>$r_{\text{C-X}}$</td>
</tr>
<tr>
<td>Br$^- + \text{CH}_3 - \text{Cl}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Br – – – CH$_3$ – – – Cl]‡</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Br – CH$_3 + \text{Cl}^-$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Examine the energies of the reacting species for the symmetric Br$^- + \text{CH}_3\text{Cl}$ S_N2 reaction in both the gaseous and aqueous phases, and enter the observed energies in the table below. These values are the calculated heats of formation (ΔH_f).

Gas and Aqueous Phase Energies (kJ/mol) for Reacting Species

<table>
<thead>
<tr>
<th>Species</th>
<th>Gas Phase</th>
<th>Aqueous Phase</th>
<th>Solvation Energya</th>
</tr>
</thead>
<tbody>
<tr>
<td>Br$^- + \text{CH}_3 - \text{Cl}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Br$^- \cdots \text{CH}_3 - \text{Cl}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Br - - - CH$_3$ - - - Cl]‡</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Br – CH$_3 \cdots \text{Cl}^-$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Br – CH$_3 + \text{Cl}^-$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a) Solvation Energy = $\Delta H_f^{\text{aqueous}} - \Delta H_f^{\text{gas}}$
Analysis of the Br$^-$ + CH$_3$ClS$_N$2 Reaction

- Sketch the structure of the transition state species below providing geometrical parameters including bond distances and bond angles.

```
[Cl -- -- CH$_3$ -- -- Br]$^\ddagger$
```

How does the above structure compare to the transition state structure for the identity or symmetric Cl$^-$ + CH$_3$ClS$_N$2 reaction: [Cl -- -- CH$_3$ -- -- Cl]‡?

Which structure corresponds more closely to the idealized trigonal bipyramid structure with a carbon atom at the center?

- View the animation of the electrostatic potential map for the Br$^-$ + CH$_3$ClS$_N$2 reaction by stepping through each frame. Specifically, observe the changes which occur in the electrostatic potential map of the iso-density surface from frame to frame and interpret the color shifts.

 Recall that colors toward red represent excess negative charge while colors toward blue represent excess positive charge. Describe your observations.
Analysis of the Br⁻ + CH₃ClS₅N₂ Reaction

- View the animation of the imaginary frequency for the [Cl–CH₃–Br]⁻‡ transition state structure. Make a sketch of the movement of each atom by sketching the structure below and draw small vectors next to each atom to designate the direction of movement.

- View the animation of the bond density for the Br⁻ + CH₃ClS₅N₂ reaction by stepping through each frame. Observe what electron density shifts are taking place, and describe your findings.

- From the above observations provide a description of the chemical transformation taking place as the Br⁻ ion approaches the CH₃Cl molecule.
Analysis of the $\text{Br}^- + \text{CH}_3\text{ClS}_\text{N}_2$ Reaction

- Observe the trend for changes in charges on nucleophile (Br^-) and leaving group (Cl^-) as the $\text{Br}^- + \text{CH}_3\text{ClS}_\text{N}_2$ reaction proceeds. Describe your findings.

- Explain how the presence of a solvent modifies the gas-phase reaction profile. Does the solvent affect the barrier height? Does the solvent affect the reaction exothermicity? To answer this question, observe how the solvent affects the reactants and products, and contrast this observation with its effect on the transition state.
Thermodynamics and Kinetics of the Br− + CH₃ClSN₂ Reaction

The equilibrium constant (\(K = \frac{\text{[products]}}{\text{[reactants]}}\)) can be related to the Free Energy (\(\Delta G\)) between reactants and products by the equation:

\[\Delta G^0 = -RT\ln K\]

where \(R\) is the gas constant (8.31451 J mol\(^{-1}\) K\(^{-1}\)), and \(T\) is the temperature in degrees Kelvin. As was noted earlier, the Free Energy change for a reaction can be given by

\[\Delta G = \Delta E_{\text{Reaction}} = E_{a, f} - E_{a, r}\]

- Calculate the equilibrium constant, \(K\) for the SN₂ reaction:

\[
\text{Br}^- (aq) + \text{CH}_3\text{Cl}(aq) \rightarrow \text{Br}^-(aq) + \text{CH}_3\text{Cl}(aq)
\]

at 25 °C and 60 °C

- Is the trend in \(K\) derived from your calculations above consistent with what should occur as the temperature is increased? Explain.
Thermodynamics and Kinetics of the $\text{Br}^- + \text{CH}_3\text{Cl}$ S_N_2 Reaction

The rate can be expressed as a second order equation for the S_N_2 reaction:

$$\text{Br}^- (\text{aq}) + \text{CH}_3-\text{Cl} (\text{aq}) \rightarrow \text{Br}^- + \text{CH}_3\text{(aq)} + \text{Cl}^- (\text{aq})$$

$$\text{rate} = k [\text{Br}^-] [\text{CH}_3-\text{Cl}]$$

where the rate constant, k at 60°C is $6.2 \times 10^{-4} \text{ L}^{-1} \text{ mol}^{-1} \text{ s}^{-1}$.

- Calculate the rate constant at 25°C using the equation

$$\ln \frac{k_1}{k_2} = -\frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$

For the S_N_2 reaction in the gas phase

$$\text{Br}^- (\text{g}) + \text{CH}_3-\text{Cl}(\text{g}) \rightarrow \text{Br}^- + \text{CH}_3(\text{g}) + \text{Cl}^- (\text{g})$$

the identical second order rate law given above is followed. However the rate constant k is several orders of magnitude larger giving rise to significantly faster rates for the gas phase.

- Give possible reasons why the gas phase reaction rate is faster than that for the solution phase.

Last Revised: 02/02/98