Systemic Engineering Education Reform
~ The Path to Change ~

Eli Fromm, Ph.D.
Roy A. Brothers, University Professor
Professor of Electrical and Computer Engineering
Drexel University
Philadelphia, PA USA

XXII Pan American Congress on Engineering Education
Mexico City, 23 September 2004
Educational Reform
(What, How, Success, Challenges)

Single Institution: (the beginning)

Drexel University:
• Centered on first two years
• Primarily dealt with curriculum & student development
• Bridging across departments and Colleges within one University
• E⁴ which evolved into ‘tDEC’

Multiple Institutions:

Gateway Engineering Education Coalition
• Built on prior work and extended to all years
• Bridging across Universities
• A broader set of issues beyond curriculum alone
 ✓ Curriculum (as a vehicle to address broader set of issues)
 ✓ Educational Methods
 ✓ Professional Development of Faculty and Students
 ✓ Technology as an educational vehicle
 ✓ Specific attention underrepresented minorities
 ✓ Assessment
Traditional U.S. Undergraduate Sequenced Curriculum
(From the early 1950’s to the mid-1980’s and beyond)

Sequential, layered, and segments often disconnected

Passing Through the Filters
Identified Needs: 1980’s and forward
(National Studies, Academia, Industry)

• Increase emphasis on synthesis and design
• Retain strong foundation in mathematics, natural sciences, engineering sciences, and fundamental concepts of analysis and design
• Strengthen emphasis on historical and societal Perspectives
• Develop management and communication skills
• Provide interdisciplinary exposure
• Prepare for career-long learning
• Develop greater independent thought and leadership
• Use technologies as a means to enhance the educational process
• Increase faculty investment in undergraduate engineering education
• Establish an engineering educational culture that is supportive of understanding the issues of:
 • Educational Pedagogy
 • How students learn, how we teach, as well as what we teach
 • The need to measure the effectiveness of our educational process
A vertically Integrated Continuum

- A Joint Initiative between engineering, science, math & humanities

Integrated and Interwoven Components:
- Engineering Up-Front and the Intellectual Centerpiece
- Math, Science, and Engineering in parallel and concurrently
- Extensive Experiential Learning
- Interdisciplinary Themes
- Concurrent integration of communication, organizational management, group dynamics, teamwork skills, and social responsibility

Results: Retention, GPA, Lessons Learned
~ Next Step ~
An Integrated Continuum Across Full Program

Integrated, Unified Science/Math

Basic Engineering up Front

Hands-on Lab, Design, Systems Methodologies

Inverted Curriculum

Year 1

Year 2

Year 3

Year 4

Research Experience

In-Depth Engineering Science

Capstone Engineering

K - 14 Interface

Baccalaureate Interface

BS/MS (Practice Oriented)

BS (Industry)

BS/PhD (Research Oriented)

In-Depth Disciplinary Engineering

Multidisciplinary Themes

Applied Liberal Arts

An Inverted Curriculum
Gateway Engineering Education Coalition
www.gatewaycoalition.org
GATEWAY STRATEGIES

Culture Change
- Curriculum
- Professional Development
- Underrepresented Populations
- Instructional Technologies
- Assessment
- Linking/Sharing (Partnerships)

Phase I
- Innovate
- Institutionalize
- Develop
- Product

Phase II
- Implement
- Process
Students Participating in Freshman Design

<table>
<thead>
<tr>
<th>Award Year</th>
<th>Number of Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 0 (1992)</td>
<td>140</td>
</tr>
<tr>
<td>Year 5 (1997)</td>
<td>2106</td>
</tr>
<tr>
<td>Year 7 (1999)</td>
<td>2491</td>
</tr>
<tr>
<td>Year 8 (2000)</td>
<td>3051</td>
</tr>
<tr>
<td>Year 10 (2002)</td>
<td>3898</td>
</tr>
</tbody>
</table>

Students Participating in Courses that Formally Integrate Communication Skills and Ethics

<table>
<thead>
<tr>
<th>Award Year</th>
<th>Communication</th>
<th>Ethics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 0 (1992)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Year 5 (1997)</td>
<td>2300</td>
<td>3051</td>
</tr>
<tr>
<td>Year 7 (1999)</td>
<td>3200</td>
<td>2491</td>
</tr>
<tr>
<td>Year 8 (2000)</td>
<td>3898</td>
<td>3051</td>
</tr>
<tr>
<td>Year 10 (2002)</td>
<td>5000</td>
<td>3898</td>
</tr>
</tbody>
</table>
Underrepresented Student Graduation Rates (Percent Degrees Awarded)

- **1991/92**
 - Women: 13.6%
 - African American: 3.9%

- **1996/97**
 - Women: 15.7%
 - African American: 6.0%

- **2000/01**
 - Women: 19.5%
 - African American: 7.1%
Comparison of Gateway Coalition’s 1st to 2nd year Retention Rates against a National Sample

*National sample of 2002 STEM majors as collected by the Consortium for Student Retention Data Exchange (CSRDE):
www.occe.ou.edu/csrde
Structured Assessment Process

The process of identifying, defining, measuring, and analyzing institutional and educational outcomes is one of the drivers of culture change.
Courses with Documented Learning Objectives

- Year 10 (2002): 1605
- Year 8 (2000): 1391
- Year 7 (1999): 523
- Year 5 (1997): 82
- Year 0 (1992): 30

Students Participating in Outcome Assessment Processes

- Year 10 (2002): 9411
- Year 8 (2000): 5128
- Year 7 (1999): 4788
- Year 5 (1997): 1882
- Year 0 (1992): 430
Texts & Multimedia Products

Gateway Web Repository
http://www.gatewaycoalition.org
Gateway Engineering Education Coalition
Opening Doors to the Future

Supported by the Education and Centers Division of the Engineering Directorate of the National Science Foundation (award numbers EEC-9105794 & EEC-9727413). Opinions, findings, conclusions or recommendations expressed in these materials are those of the author(s) and do not necessarily represent the views of the National Science Foundation.

Copyright © 1999 by the Gateway Coalition.
Questions or comments? Contact gateway@bim.post.drexel.edu
Last modified: Thursday, August 05, 2004.

Engineering the Educational Enterprise for the Future
Cross-Institutional Programs using Technology as a Bridge

- Concurrent Engineering
- SLA Network
- Rapid Prototype Design
Courses Using Cooperative Learning Methodologies

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>364</td>
</tr>
<tr>
<td>2000</td>
<td>330</td>
</tr>
<tr>
<td>1999</td>
<td>298</td>
</tr>
<tr>
<td>1997</td>
<td>117</td>
</tr>
<tr>
<td>1992</td>
<td>39</td>
</tr>
</tbody>
</table>

Faculty Teaching Lower Div. Engineering Courses

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1992</td>
<td>69</td>
<td>49</td>
<td>99</td>
<td>90</td>
<td>141</td>
<td>153</td>
<td>143</td>
<td>180</td>
<td>147</td>
<td>186</td>
</tr>
</tbody>
</table>

Engineering the Educational Enterprise for the Future
The Future?

Thank You

Access Slides on-line:
• http://www.gatewaycoalition.org
• Search
• UPADI