Maple Assignment Fall 1998 Solution

A motorcyclist starts from rest at \(x = 0 \) and accelerates uniformly along a horizontal track. The times taken by the motorcyclist to pass photogates located at 10 meter intervals are measured. The positions (measured in m) of the photogates are \(x = 0, 10, 20, 30, 40 \) and 50 and, the motorcycle passes these photogates at the times (measured in s) \(t = 0, 1.63, 2.33, 2.83, 3.31 \) and 3.79 respectively.

a) Write down an equation for the distance "\(x \)" to each one of the photogates from the origin in terms of the time "\(t \)" and the constant acceleration "\(a_1 \)". No Maple is needed here.

We expect them to write: \(x = x_0 + (1/2)a_1t^2 \) or something equivalent to this.

b) Using the fit command in Maple as shown in the sample program, find the straight-line fit of the data to the equation in (a) above. What is the acceleration "\(a_1 \)"?

c) Plot the data and the straight-line fit on the same graph of "\(x \)" versus \(t^2 \).

```
> d:={0,10,20,30,40,50}; t:={0,1.63,2.33,2.83,3.31,3.79};
> tt:={0,1.63^2,2.33^2,2.83^2,3.31^2,3.79^2};
> with(stats):
> fit[leastsquare][[d,tt],d=a*tt+b,{a,b}][[0,10,20,30,40,50],[0,2.66,5.43,8.01,10.96,14.36]];

\[ d = 3.517680051 \, tt + 0.7162820493 \]

The acceleration is \( a_1 = 3.52 \times 2 = 7.1 \) m/s\(^2\).

> L:=[[0,0],[2.66,10],[5.43,20],[8.01,30],[10.96,40],[14.36,50]];
> plot([L,3.518*tt+0.716],tt=0..15,style=[point,line]);
```
A second experiment is conducted on the same motorcyclist traveling with a different constant acceleration "a2" and the speeds are measured by detectors mounted on posts numbered \(j = 1, 2, 3, 4, 5, 6 \). The distance between successive posts is \(d_0 = 10 \text{ m} \). The first post (\(j = 1 \)) is located at an unknown position \(x_1 \) from the origin. Note that \(v(j) \) is the speed of the motorcyclist at post number "\(j \)". The equation for \(v_2(j) \) in terms of the speed \(v(1) \) at post 1, is given by

\[
 v_2(j) = v_2(1) + 2a'do(j - 1)
\]

where, \(v_2(1) = 2a'x_1 \).

The speeds (in m/s) are \(v = 14.0, 18.3, 21.7, 24.6, 27.5 \) and 30.0 at posts \(j = 1, 2, 3, 4, 5 \) and 6 respectively.

d) Using the fit command in Maple as shown in the sample program, find the straight-line fit of the data to the equation \(v_2(j) = v_2(1) + 2a_2d_0(j - 1) \) and find the acceleration "\(a' \)" and "\(x_1 \).

```maple
> with(stats):
> fit[leastsquare][vsq,j,vsq=c1+c2*(j-1),{c1,c2}]([[196,334.9,470.9,605.2,756.3,900],[1,2,3,4,5,6]]);

vsq = 52.03333334 + 140.5285714 j
```
So we see that \(c_1 - c_2 = 52.03 \) and \(c_2 = 140.53 \). Thus \(c_1 = 192.6 \) and \(c_2 = 2a'do=140.53 \). Thus \(c_1 = 2a'x_1 = 192.6 \).

```maple
> aprime:=140.53/(2*10);x1:=192.6/(2*aprime);
```

\(aprime := 7.026500000 \)

\(x1 := 13.70525867 \)

```maple
> vsq:=[[1,196],[2,334.9],[3,470.9],[4,605.2],[5,756.3],[6,900]];
> plot([vsq,140.5285714*j+52.033333334],j=1..6,style=[point,line]);
```

\(vsq := [[1,196],[2,334.9],[3,470.9],[4,605.2],[5,756.3],[6,900]] \)